On $\mathcal{M}$-harmonic Bloch space
نویسندگان
چکیده
منابع مشابه
On characterizations of hyperbolic harmonic Bloch and Besov spaces
We define hyperbolic harmonic $omega$-$alpha$-Bloch space $mathcal{B}_omega^alpha$ in the unit ball $mathbb{B}$ of ${mathbb R}^n$ and characterize it in terms of $$frac{omegabig((1-|x|^2)^{beta}(1-|y|^2)^{alpha-beta}big)|f(x)-f(y)|}{[x,y]^gamma|x-y|^{1-gamma}},$$ where $0leq gammaleq 1$. Similar results are extended to little $omega$-$alpha$-Bloch and Besov spaces. These obtained...
متن کاملEssential norm of weighted composition operator between α-Bloch space and β-Bloch space in polydiscs
Let ϕ(z) = (ϕ 1 (z),...,ϕ n (z)) be a holomorphic self-map of D n and ψ(z) a holomorphic function on D n , where D n is the unit polydiscs of C n. Let 0 < α, β < 1, we compute the essential norm of a weighted composition operator ψC ϕ between α-Bloch space Ꮾ α (D n) and β-Bloch space Ꮾ β (D n).
متن کاملMultiplication Operators on the Bloch Space of Bounded Homogeneous Domains
In this paper, we study the multiplication operators on the Bloch space of a bounded homogeneous domain in C. Specifically, we characterize the bounded and the compact multiplication operators, establish estimates on the operator norm, and determine the spectrum. Furthermore, we prove that for a large class of bounded symmetric domains, the isometric multiplication operators are those whose sym...
متن کاملIsometries and Spectra of Multiplication Operators on the Bloch Space
In this paper, we establish bounds on the norm of multiplication operators on the Bloch space of the unit disk via weighted composition operators. In doing so, we characterize the isometric multiplication operators to be precisely those induced by constant functions of modulus 1. We then describe the spectrum of the multiplication operators in terms of the range of the symbol. Lastly, we identi...
متن کاملCharacterisation of the Isometric Composition Operators on the Bloch Space
In this paper, we characterise the analytic functions φ mapping the open unit disk ∆ into itself whose induced composition operator Cφ : f 7→ f ◦ φ is an isometry on the Bloch space. We show that such functions are either rotations of the identity function or have a factorisation φ = gB where g is a non-vanishing analytic function from ∆ into the closure of ∆, and B is an infinite Blaschke prod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1995
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1995-1264815-0